===== 2D flow around a heated square-cylinder - $Re_{h}= 50$, $Ra= 5\; 10^6$ ===== A heated square-cylinder is placed in a channel flow **Author** : Y. Fraigneau, LISN, UMR CNRS 9015 (yann.fraigneau@lisn.fr) \\ **Date** : June 2019\\ **Simulation type** : DNS (code Sunfluidh -- [[https://sunfluidh.lisn.upsaclay.fr|Sunfluidh code]]) \\ **Location** : /DATABASE_2DFLOW_AROUND_HEATED_SQUARECYLINDER_DNS \\ **Status** : Free access for laboratory members, on request for external members \\ **Data size** : ~ 1 Gb \\ {{ :datasetmeca:snapshot_heatcyl_snap.png?900 |}} [[https://sunfluidh.lisn.upsaclay.fr/doku.php?id=sunfluidh:sunfluidh_gallery#d_flow_past_a_heated_square-cylinder| A video is available here ]] [[:start|Come back to first page]] ----- ==== Simulation settings ==== ---- === 2D sketch === {{ :datasetmeca:sketch_config_heatcyl.jpg?600 |}} === Referential : cartesian geometry === - axes : * x(i) : downstream direction * y(j) : normal direction - origin : lower left corner of the computational domain * $x_0= 10h$ * $y_0= -6h$ === Reference scales === * Density : mass density of the fluid ($\rho_0$) * Lengths : cylinder size ($h$) and $H_u= 10h$ the distance between the domain's top and the square-cylinder's top. * Velocity : velocity at inlet ($U_0$) * Dynamic viscosity : dynamic viscosity of the fluid ($\mu_0$) * thermal diffusivity : ($\kappa_0$) * Reynolds number : $Re_h= \frac{\rho_0.U_0.h}{\mu_0}= 50$ * Rayleigh number : $Ra_{Hu}= \frac{\rho_0.\beta.g\Delta T.H_u^3}{\mu_0 \kappa_0}= 5\;10^6$ === Non-dimensionalised data === * velocity : $U^*=\frac{U}{U_0}$ * density : $\rho^*= \rho/\rho_0= 1$ * coordinates : $x*=\frac{x}{h}$, $y^*=\frac{y}{h}$ * temperature : $T^*=\frac{T-T_c}{T_h-T_c}$ ($T_h$ and $T_c$ are respectively the temperature imposed at the cylinder's walls and the temperature at the inlet and channel's walls) === Computational domain === - **Domain scope** - computational domain size (channel flow) * Downstream direction(x) : $L_x^*= 50.0$ (upward part $L_u= -10$, downward part $L_d=40$) * Normal direction (y) : $H*= 20.0$ - heated square cylinder * size: $h^*= 1$ * wall temperature T_h^*= 1 - **Boundary conditions** * Inlet : imposed pressure uniform velocity ($U_0=1$) * Outlet : Orlansky type * Bottom and top conditions : walls at (T_c^*=0) - **Spatial resolution** * mesh size : $512 \times 256 $ (131.072 cells) * About cell-size * $\Delta x*$ : from $0.03125$ to $0.723$ (downstream direction) * $\Delta y*$ : from $0.03125$ to $0.187$ (normal direction) [[:start|Come back to first page]] ---- ==== Data features ==== ---- * **Time series ** * Physical quantities : velocity components along x and y directions (u,v) and pressure (p) * 1 probe * Time step= $\approx 6 \,10^{-2}$ time unit (irregular time step) * Time range : 250 time units * Location : Xi= 20.0 , Xj=2.0 * File name (per physical quantity): x_ins_00000.d with x= u,v,t * **3D snapshots** * Instantaneous fields : velocity components in x, y and z directions (U,V), the pressure (P) and the phase function related to the body motion (TRACE) * Recording rate : 1 time unit * Time range from from 20.0 to 250.0 time units * File name : res_xxxxx_yyyyyyy.d * MPI subdomain ID: from 0 to 3 (case with MPI domain decomposition) * Time ID : from 0 to 250 [[:start|Come back to first page]] ---- ==== Database organisation ==== ---- **Data size** : ~ 3 Gb \\ **Main directory** : /vol/DATABASE_MECA/DATABASE_2DFLOW_HEATED_SQUARRECYLINDER_DNS \\ Directories & files /DATASETUP : ASCII files input data file for sunfluidh : input3d.dat (and input3d.dat_mpi4 for the case with MPI domain decomposition) /GRID : ASCII files input data file : data_meshgen.d grid files for sunfluidh: maillx.d, mailly.d, maillz.d (sequential case) mesh.tar (archive containing grid files for a domain decomposition with 4 MPI processes) /SNAPSHOTS : snapshots binary files res_xxxxx_yyyyyyy.d /SNAPSHOTS_MPI4 : snapshots resulting from a domain decomposition with 4 MPI processes /TIMESERIES : ASCII files u_ins_00000.d , v_ins_00000.d and t_ins_00000.d (timeseries of the velocity components and temperature from probe) [[:start|Come back to first page]]